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Abstract— Mobile robot localization is a mature field that
over the years has demonstrated its effectiveness and robust-
ness. The majority of the approaches, however, rely on a
globally consistent map, and localize on it in an absolute
coordinate frame. This global consistency cannot be guaranteed
when the map is estimated by the robot itself, and an error
in the map will likely result in the failure of the localization
subsystem. In this paper we introduce a novel paradigm for
localization, namely relative topometric localization, by which
we forgo the need for a globally consistent map. We adopt a
graph-based representation of the environment, and estimate
both the topological location on the graph and the relative
metrical position with respect to it. We extensively evaluated
our approach and tested it against Monte Carlo localization
on both simulated and real data. The results show significant
improvements in scenarios where there is no globally consistent
map.

I. INTRODUCTION

Mobile robot localization is a well studied field in robotics
and several robust approaches to localization have been
proposed in the past [11, 14, 19, 12]. The majority of those
approaches, however, assume that a globally consistent map
of the environment is built beforehand by a mapping process.
This map is then used to estimate the pose of the robot in
a single absolute reference frame, often without taking into
account the map uncertainties arising from the robot pose
estimates during mapping.

Such maps are normally built by a separate mapping pro-
cess, solving what is called the simultaneous localization and
mapping (SLAM) problem. Many modern techniques for this
problem are based on a least squares minimization approach
over a graph of measurements [13], whose error is assumed
to be normally distributed. In the presence of data association
outliers, the Gaussian error assumption leads to maps that are
not globally consistent. The need of a globally consistent
map for localization led many researchers to either apply
robust statistics in the minimization step [1, 30, 18, 24], or
to measure the global consistency of the resulting maps [20].

In this paper we propose a novel paradigm to robot local-
ization that relaxes the assumption of a globally consistent
map and a single absolute reference frame. We believe that,
for the majority of navigation tasks, a globally consistent
map is not necessary and one only needs global topological
information and local metrical consistency. Our paradigm,
relative topometric localization (RTL), is based on a graph
representation of the environment, where each node repre-
sents a pose in the map and each edge their relative trans-
formation. The graph implicitly defines a manifold structure
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(a) Ground truth map

(b) Optimized map with outliers

Fig. 1. Effect of outliers in the association on the global consistency of the
resulting map. Introducing just 5 outliers in the data association (marked in
red) renders the central part of the map completely unusable for MCL.

with a chart associated to each node that parametrizes its
local neighborhood. Such maps are not unusual in robotics,
since they are the internal representation of modern mapping
approaches based on pose-graph estimation or bundle adjust-
ment. We also do not assume this map to be the result of
any optimization process, nor to be globally embeddable in
a single Euclidean space.

We formulate the localization problem as jointly esti-
mating the current reference frame and the relative pose
of the robot within its chart. Our paradigm has a set of
advantages with respect to approaches based on a single
absolute reference frame: 1) we are inherently robust to maps
that are not globally consistent; 2) we include uncertainties
in the map estimate during localization; and 3) we operate
on unoptimized maps, removing the need for a SLAM back-
end.

We thoroughly evaluated our approach on a large set of
experiments in fully simulated environments, simulated en-
vironments sourced from real data, as well as on a real robot
tracked with a motion capture system. To verify our claims,
we compared ourselves with a Monte Carlo localization
approach [26] on maps that have different levels of global
inconsistency. As an additional experiment, we also evaluated
our paradigm when the map is globally consistent but the
environment changed its appearance (e.g., furniture was
added, removed, or moved around). The experimental results



show that a relative topometric approach is indeed resilient
to global inconsistencies in the map. Further, the method
provides localization accuracy of few millimeters even under
significant changes in the environment or inconsistencies.

II. RELATED WORK

Autonomous localization has been mainly addressed
within probabilistic state estimation frameworks, with solu-
tions based on extended Kalman filters (EKF) [19], histogram
filters [12] or particle filters, often referred to as Monte-
Carlo localization (MCL) [11]. Such approaches assume
knowledge of a globally consistent map, without considering
any uncertainty on it apart from the error induced by grid-
based approximations. In this work, we relax the assumption
of global consistency and we explicitly consider uncertainties
in the map stemming from the SLAM process.

In the context of SLAM and bundle adjustment, several
authors explored the concept of relative estimates. Howard
et al. [2] introduced the idea of a manifold mapping for
multiple robots. In their approach, the map is represented as a
two-dimensional manifold embedded in a higher-dimensional
space. They introduce key ideas of the manifold structure
and present an application to multi-robot mapping. Sibley et
al. [27] propose the relative bundle adjustment paradigm.
They claim that bundle adjustment is costly due to the
choice of a single privileged reference frame and propose
to optimize in a metric space defined by a manifold instead
of a single Euclidean space. Their paradigm has been first
extended by Blanco et al. [6], to consider a set of possible
sparsification strategies, and by Strasdat et al. [29], to con-
sider a second optimization window and to enforce a metric
consistency within this optimization window. We differ from
those works for the fact that we address a localization
problem and also estimate a distribution over the reference
frame. This is needed in order to include possible multiple
localization hypotheses.

Churchill and Newman [9] introduced the concept of
navigation experiences, i.e., robot paths with relative metrical
information. They localize the robot in the experiences by
first using appearance-based data association methods to
estimate the initial node in the experience graph and then
track the robot position using visual odometry techniques. In
contrast to our framework, their approach does not consider
uncertainties in the map, nor does it track the index of the
reference frame over time.

Recently, the need of a globally consistent map for nav-
igation has been questioned by some researchers. Konolige
et al. [15] propose a navigation system based on a hybrid
metric-topological map. They employ a laser scanner and
localize the robot with respect to one reference node in the
graph. Dayoub et al. [10] extended the approach to cameras
and consider a set of image features associated at each node
in the graph. Our approach is closely related to this last two.
The main difference is that we do not assume the graph to
be the result of an optimization algorithm. Additionally, we
are able to consider uncertainties in the map estimates.

The concept of topometric localization has also been
exploited by Badino et al. [3]. The authors build a topological
map as a vehicle travels along its route. Each node is linked
with a pose in the environment and the localization algorithm
estimates which node the robot is currently in. The robot pose
is then the pose stored in that node. Xu et al. [33] extend
this to consider multiple roads and branchings along paths.
Both approaches differ from ours, as the real estimation part
is purely topological and the authors still rely on a global
reference frame for the robot pose.

Ideas closely related to topometric localization are also
present in teach-and-repeat frameworks. Sprunk et al. [28]
propose a data-driven approach using laser scanners and
demonstrate millimeter-level accuracy without building any
globally consistent map of the environment. McManus et
al. [21] propose an approach based on 3D laser reflectivity
that is able to handle long-range navigation in challenging
environments. The map is a chain of poses, where each pose
has a submap associated to it. Localization is performed
on this submap, relative to the corresponding pose, and a
set of heuristics to switch submaps is presented. Kriisi et
al. [16] build a similar metrical/topological map, but rely
on ICP to perform localization on the submaps with a local
motion planner to avoid obstacles. Our approach differs from
teach and repeat paradigms since we do not localize only on
a single route and we further propose a sound estimation
framework for tracking the reference frame.

III. RELATIVE TOPOMETRIC LOCALIZATION

In this section we describe the relative topometric lo-
calization paradigm and relate it to the metric one. In
metric localization, one seeks to estimate the pose of the
robot at each time step, given the map of the environment
and the history of sensor measurements and controls. The
main assumption is that the map is a globally consistent
metric representation of the environment, consisting of the
absolute position of relevant features in the environment
(e.g., cells in an occupancy grid or a set of key-points
for visual localization). The location of those features, as
well as the pose of the robot, is expressed with respect
to a single reference frame, which is the global coordinate
frame of the map. Formally, this is equivalent to recursively
estimating the posterior p(x; | Z1.¢, W14, m), with robot pose
Xy, measurements z.;, odometry readings uy4! and map m.

This is often estimated by a finite set of particles, resulting
in the well established field of Monte Carlo localization
(MCL) [11]. MCL has been proven to be a robust approach
for localization and is often deployed on robots when the map
m is known a-priori. Nevertheless, estimating the pose of the
robot in an absolute frame of reference implicitly assumes
the map m to be globally consistent, an assumption that can
easily be violated in the presence of outlier associations dur-
ing the SLAM process. Such a scenario can especially occur
if the map of the environment is automatically computed by

'Note that this is equivalent to the more traditional formulation with
control inputs.



the robot, without human post-processing, and the underlying
SLAM system introduces wrong associations due to, say,
perceptual aliasing [1]. Fig. 1 showcases how the effect of a
small amount of associations can impact the resulting map
and consequently cripple the estimate of MCL in a large
portion of it.

A. Relative Topometric Paradigm

In the relative topometric paradigm, we relax the as-
sumption of a globally consistent metric map. As map
representation, we follow an approach much akin to the
one proposed by Howard et al. [2]. We consider the map
of the environment to be a collection of patches that are
locally homeomorphic to the Euclidean space, thus inducing
a manifold structure, without the need of defining a global
embedding.

More precisely, the map is a graph of poses m;, ¢ =
1,..., N with a set of relative transformations w; ; € SE(n)
between them, and sensory data attached to them. Each node
¢ in the graph defines a local chart of the manifold, of which
m; is the origin. Here, we can assume that the projection
of the sensory data of the nodes in a neighborhood of ¢ is
roughly locally consistent. This, in turn, defines an open set
in which the chart is valid.

While the chart is only locally valid, we can still express
the poses of the remainder of the map in this reference sys-
tem by chaining the transformations w; ; along the minimum
distance spanning tree of the whole graph, with farther nodes
having increasingly erroneous relative position estimates.

Let z; = [zgl) 22 .. ng)} be a vector of measurements
at time ¢, where each zgl) arises from matching the current
observations of the robot with the observations stored in the
node ¢ of the graph. We wish to estimate at each time step ¢
the vector of relative transformations between the poses m;
and the robot, namely Ax, = [Ax{Y Ax{® ... Ax{M] ¢
SE(n)™. In the ideal situation, where the manifold can be
globally embedded, AXEZ) = 6m,; P X;. Here, m; and x;
respectively represent the pose of the node and of the robot
in an absolute coordinate frame.

Formally, this is equivalent to jointly estimating the poste-
rior over the reference frame r; (i.e., the index of the current
chart for the manifold) and the relative poses Ax; of the
robot in that particular chart:

p(re,AXy | Z1:4, Wi, W)
= p(AXt | Tty Z1:¢, ul:t7w)p(Tt | Z:t, ul:taw)' (1)

The distribution is composed of a discrete probability mass,
which represents the probability of the robot being within
the open set in which the chart is valid, associated with a
continuous probability density function, which we assume to
be a Gaussian, that represents the distribution of the robot
pose in that specific chart. Following Bar-Shalom et al. [4],
the estimation of (1) can be formulated within the Dynamic
Multiple Model Estimator framework. In this framework, the
goal is to estimate the state of a system that obeys one of a
finite number of system models. Each model defines its own

measurement and motion model and, during the estimation
process, the system may change its model of operation. In
our case, we can consider the choice of the reference frame
as one model of our system, resulting in a finite number of
models equivalent to the number of nodes in our graph. The
change of model happens when the robot is not any longer
in the valid set of the current chart and a new chart must be
used.

Unfortunately, the full estimation problem requires track-
ing the whole sequence of frames, which results in Gaussian
mixture distribution with an exponentially increasing number
of terms. To reduce this complexity, approximated algo-
rithms have been proposed, such as the Interacting Multiple
Model [4], Markov Chain Monte Carlo [23], or Multiple
Hypothesis Tracking [5].

In this paper, we focus on position tracking and we
approximate the estimation of (1) by considering only the
maximum likelihood frame at each time step. We believe that
this is a valid approximation for position tracking problems,
which is also confirmed by the experimental results presented
below. We leave the full estimation problem as future work.

IV. POSITION TRACKING IN THE RELATIVE TOPOMETRIC
PARADIGM

In this section we describe the proposed approximation
of (1) and its instantiation for position tracking problems.
At each time step ¢, we approximate the distribution over
the reference frames with a deterministic probability mass,
centered at its maximum 7, i.e.,

p(Tt | Z1:t7111:t,W) ~ 5[7“15 - M, )

where §[r| denotes the discrete impulse function. To compute
the next estimate of r; we thus need to find the index
r¢ = 1 over the possible reference frames that maximizes
the likelihood

p(re | W, Z1:4, Ur)

= ZP(T:& \ 7”t—1,Z1:t,111:t7W)P(7"t—1 | Zl:t7u1:t,W) 3)
Tt—1
X p(Zt | Tt,ft—lalll:taw)p(rt | ft71,Z1:t71,111:t7W) “4)

~ (e | 7o, Peo1,ue, W, ARy 1) p(re | Fi—1). )

Here, AXx;_1, denotes the random variable associated to
the posterior distribution of Ax;_; estimated at the previous
time step. We assume Ax; ; to be approximable by a
Gaussian random variable with mean AX;_; and covariance
3;_1. Note that from (3) to (4), we substituted approximation
(2), applied Bayes’ rule on z;, and used the independence
assumption of the measurements. From (4) to (5) we fol-
lowed the same approach of the generalized pseudo-Bayesian
estimator of first order (GPB1) [4], namely, we assumed a
transition model p(r; | r,—1) on the reference nodes, and
used the previous displacement estimate for computing the
measurement likelihood.

In this work we restrict ourselves to a uniform p(r; | 7,—1)
over all nodes in a local neighborhood of r;_1, although this
can be easily generalized to more elaborate models. As for



the measurement likelihood, we computed it as follows. We
first predict the relative pose of the robot in the reference
frame r; = ¢ by propagating the previous relative pose
at time ¢t — 1 from the reference 7;_; through the relative
measurements w defined in the map. Under normality as-
sumptions, the likelihood is then equal to N (z; — 24;0,3),
where Z, is the predicted observation relative to the reference
frame r; = 7 and ¥ is the innovation covariance matrix.

In the case of range sensors, which is the implementation
target of this paper, the map includes a laser scan per node,
the predicted observation is the relative pose of the robot in
the reference frame of r;, while the current observation can
be the result of an ICP procedure [8].

Let m denote the stacked m; poses, in the local neigh-
borhood of ry, say V;, for which the chart associated to 7
is valid, as well as the pose m, with s = 7;_;. Then, to
compute the distribution over the robot pose, we express (1)
as the marginal over m and Ax;_;. Given the approximation
defined in (2), we compute the distribution

p(AXt | fmzlzt,ul:taw)

= //p(AXDAthlam | ’Fhftflvzl:hul:hw)
-dAx;_1dm. (6)

Under the assumption that the conditional distribution of
Ax; can be reasonably well approximated by a normal
distribution, we can estimate the mean AX; of the marginal
by maximum likelihood inference over the joint space of
the relative poses Ax;, the map nodes m, and the previous
relative poses Ax;_1. The marginalization step is performed
by simply extracting the values corresponding to Ax; from
the joint mean vector. The covariance ¥;_;, on the other
hand, can be computed by linear error propagation through
the optimization algorithm.

Note that the choice of reference frame (i.e., the chart)
introduces a map locality due to the domain of the homeo-
morphism, implicitly discarding nodes and measurements of
the graph not included in the domain.

Thus, dropping 7; and 7,_; for simplicity, the joint like-
lihood is proportional to

p(z¢|Axy, m)p(w [ m)p(u; | Axy, Ax;1) @)
p(A%—1 | m, Axyq), ®

where we assumed z;, w, and u, to be conditionally indepen-
dent. Theoretically, we cannot assume independence between
w and Ax;_1, since Ax;_; was estimated at the previous
time step by using w as well. To avoid overconfidence
due to this correlation, the resulting covariance estimate
should be corrected. The correction factor can be computed
following the approach of Mourikis and Roumeliotis [22].
We, however, experimentally found its effect to be negligible.

For ease of notation we will henceforth refer to #; as r and
7+_1 as s. Under the chart of r, the new reference node acts as
the origin of its homeomorphic Euclidean space, with respect
to which its neighborhood is expressed. We can thus consider
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Fig. 2. Frames and relative transformations involved in the small-scale

estimation the robot’s relative pose (top) and the factor graph associated to
the same problem (bottom).

a set of relative map pose coordinates Amgr) Vi € V4, which
in the ideal case would be equivalent to ©m, G m,;.

To simplify the understanding of the conditional inde-
pendence structure of the likelihood in (8), we provide in
Fig. 2(a) the reference frames at work in the estimation prob-
lem. Here, k € V;, while the observations z; are assumed
to provide SE(n) relative measurements, for example via
ICP matching. In the general formulation, the latter is not
required, and we commit to it only for the sake of clarity.

Under the assumption that z;, uy, and w are normally
distributed, we can maximize the likelihood (8) by perform-
ing nonlinear least squares optimization on a reduced factor
graph. Specifically, we construct a graph which has as ver-
tices Am\"”, Am,(:) Yk eV, Axgr_)l and Axtr). The factors
we introduce are respectively all the valid measurements z,@,
the odometry reading uy, the previous estimate Af{%sjl, and
all w; ; connecting the map poses that have been introduced
in the factor graph.

Note that there needs to exist a factor correlating mFJ)
to the remaining map vertices, as otherwise the previous
estimate and the odometry reading would be neglected. If
no such factor exists, it can be computed by linear error
propagation.

Finally, we can compute the mean A)’(,Er) of the next
estimate by setting the current reference node to zero, condi-
tioning the factor graph on it, and optimizing with respect to
the remaining vertices. The resulting factor graph associated
to the example in Fig. 2(a) is reported in Fig. 2(b). Since
we are conditioning with respect to the current reference
node, the factors that connected it have become priors on
the other vertices. Note that in this formulation, there is no
assumption on z; and it does not necessarily need to be an
SE(n) measurement, however, z; should be such as to allow



(b) Simulated environment 2

(c) Real environment

Fig. 3. Environments considered in the experiments in addition to the more
common SLAM datasets. The objects marked in red do not appear in the
unfurnished counterparts.

the overall problem to be non-singular and observable.

Having found the mean ARET) by nonlinear least squares
optimization, the estimation of the robot’s relative position
to the remaining map poses is split over two methods. For
the map poses Amg that appeared in the factor graph
optimization, we use the resulting mean estimate Aﬁl,(:) and
compute A)’(ik) = @Arﬁg") @A)’(Er). For the remaining map
poses we compute the relative estimate by chaining together
A)’cgr) and all the transformations from the current reference
node to the target map pose, over the minimum distance
spanning tree of the full map (in this paper we used uniform
weighting). Notice that with this formulation we explicitly
compute only the uncertainty of AX,ET), and we keep all
other uncertainties as implicitly defined through linear error
propagation.

V. EXPERIMENTS

We evaluated our relative topometric localization approach
(RTL) on a 2D localization problem with range measure-
ments. We considered virtual measurements computed by the
Canonical Scan Matcher (CSM) with point-to-line metric [8]
and its first order covariance approximation [7]. We further
rely on g2o [17] for the least squares optimization and on
our MCL implementation for comparison [26].

A. Experimental setup

We evaluated our approach in both simulation and real
data. For a more realistic simulation, we also sourced laser
data from real datasets, as performed by Olson [25]. For
the simulation data, we employed the Gazebo simulator on
an environment based on two real floor plans. For each
environment we kept the unfurnished version, and created
a further one with added obstacles and furniture. Fig. 3(a)
and Fig. 3(b) show the two environments in question, with

Fig. 4. Panorama view of the real environment considered in the evaluation.

the additional obstacles and furniture marked in red. For
each of the four maps we recorded one mapping run and ten
localization runs connecting distant areas in the environment.
For the pseudo-simulated data, we tested against the Intel
Seattle, Intel Oregon, MIT CSAIL, and ACES datasets,
which are publicly available. As ground truth, we used the
aligned SLAM output and computed scans by casting rays on
this aligned map. As with the simulated datasets, we recorded
one mapping run and ten localization runs per configuration.
In the above cases, we computed laser scans with 360° of
field of vision and 360 rays. Each ray was corrupted with
Gaussian noise with lcm of standard deviation and rounded
to the closest centimeter.

For the real robot experiment we created an environment
in our lab (see Fig. 4), both with and without additional
obstacles. We used a KUKA omnirob, equipped with two
Sick S300 laser scanners with 541 beams and 270° of field
of vision. The ground truth was approximated by using a
motion capture system with 10 Raptor-E cameras recording
at 300Hz. Again, we recorded one mapping run and 10
localization runs per configuration. To synchronize the data
from the motion capture and the robot, we periodically
stopped the robot and we only considered the poses in which
the robot was stopped for both evaluation and mapping.

The motion capture may also introduce errors due to the
not perfectly even floor, limited view-points of the cameras,
and imperfect calibrations. Fig. 3(c) displays the recorded
laser scans aligned according to the motion capture as well
as the additional obstacles that were introduced in red. Note
that the map is imperfect due to the aforementioned issues,
as such the quality of the evaluation for the real data is
significantly lower than for the simulation datasets.

We compared our approach, RTL, with MCL as well as
two additional benchmark approaches: a relative approach
similar to RTL, where we assume the map is the result
of an optimization process and is not subject to errors,
(LSLOC) and MCL on the ground-truth map (MCLGT).
Note that LSLOC, is equivalent in spirit to the approach
of Konolige et al. [15] and Dayoub et al. [10]. For MCL and
MCLGT we used 5000 particles, as measurement model we
used likelihood fields saturated to 2m of maximum distance,
and rendered the map at lcm of resolution for maximum
accuracy. We experimentally found that resolutions greater
than lcm did not improve the estimate. For each dataset,
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we use the same unoptimized pose graph as input to RTL
and for computing the globally consistent map for MCL and
LSLOC.

We consider three localization scenarios: Standard local-
ization, where the given maps are globally consistent; Local-
ization with outliers:, where the maps have different levels
of inconsistency; and Furnished vs. unfurnished localization,
where maps are globally consistent and we moved furniture
between the mapping and localization phase. Since we are
considering a tracking problem, we initialized the starting
pose of all methods with the ground truth.

For the outlier case, we considered one simulated envi-
ronment and the Intel Seattle dataset with two levels of
outliers, respectively 5 and 20. We generate those outliers
by associating the most likely matchings returned by FLIRT
[31] that were at least at 3m of distance. A sample map with
five outliers is reported in Fig. 1.

B. Evaluation criteria

We evaluate the localization accuracy at each time step ¢
by measuring the discrepancy

e = o%, ® m; ® Ax{) ©)

test scenario on the real datasets. The data was gathered over 20 localization
runs.
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between the predicted relative displacements and the actual
ones, for each reference frame ¢. Here X; and m; respectively
refer to the ground-truth pose of the robot at time ¢ and of
the i-th element of the map.

We compute the error statistics according to the robot’s
actual distance from the reference frame, in order to quantify
the accuracy of all the methods at short distances, which
are of interest to the robot, but also at progressively larger
distances. We compute the shortest distances from the robot
to the map poses by means of Dijkstra’s algorithm on the
rasterized ground-truth map, with 1cm resolution. For each
time step ¢ we bin the absolute values of the errors egl) in
terms of distance and use as statistics the Sth, 25th, 50th,
75th, and 95th percentile over the whole trajectory of all
runs. When computing these statistics we do not take into
account runs that diverged; we assume a method to diverge
on any particular run if the average absolute error was greater
that 1m in translation or 60° in rotation in the last 10% of
the trajectory. Since MCLGT uses the ground-truth map for
localization the statistics are independent of the distance, we
thus report for it a single set of statistics.
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is broken in two scales, in order to display both small and large errors.

C. Accuracy results

We report in Fig. 5 and Fig. 6 the errors in terms
of translation and rotation for the simulated and pseudo-
simulated runs in the standard localization scenario. The box
plots are binned at 1m of discretization, where the [a,b)
values refer to all distances between a and b. The errors
for the pseudo-simulated datasets are indeed larger than the
simulated ones, which suggest an improved realism in the
data sourcing.

As expected, the errors increase with respect to the dis-
tance for all methods, as even the most accurate SLAM
map is subject to incremental error. Note that at larger
distances the error of RTL increases more as the local
chart is increasingly inaccurate. This is to be expected and
is the trade-off between local and global accuracy. RTL
and LSLOC consistently achieve lower errors than MCL,
particularly in terms of orientation, and at short distances
improve even on MCLGT. Nevertheless, given the scale
of the graphs (millimeters and fractions of degrees) such
differences are inconsequential.

Fig. 7 reports the accuracy results for the real datasets in
the standard localization scenario. The errors are larger than
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Fig. 11. Box plot of the errors in translation and rotation for the furnished
vs. unfurnished test scenario on real datasets. The data was gathered over
20 runs. The error axis is broken in two scales, in order to display both
small and large errors.

both the pseudo-sumulated and simulated datasets, partially
due to the inaccuracy of the motion capture framework, the
various unmodeled errors, and possibly due to the greater
number of outliers in the laser range readings. Contrary to
the previous tests, there is no clear preference to which
method is most accurate. These results confirm the practical
effectiveness of MCL when its assumptions are satisfied,
with RTL showing competitive performance.

Fig. 8 shows the accuracy results for the localization
scenario with 5 outliers. LSLOC and MCL respectively
diverged 18 and 17 times out of 20 localization runs, and
even when converged the methods exhibit significantly large
errors in both position and orientation. This result showcases
the brittleness of traditional approaches which rely on the as-
sumption of a globally consistent map. On the contrary, RTL
is virtually unaffected by the outliers up to approximately 4m
of distance. At longer distances the relative position estimates
may be obtained by chaining estimates through the outliers,
which significantly degrades the accuracy. Similarly, Fig. 9
reports the accuracy results for the localization scenario
with 20 outliers. LSLOC and MCL diverged in all runs,
while RTL converged in all instances and shows similar
performance. Although we haven’t observed such instances,
in principle, RTL might be also trapped in a wrong reference
frame and exhibit divergence, since we are committing on a
single estimate for the reference frame. This problem can be
counteracted by considering a distribution over the reference
frames.

Fig. 10 and Fig. 11 report the errors in localization for
the furnished vs. unfurnished test scenario, respectively on
simulated and real datasets. For the simulated data MCL
diverged in 4 instances, while MCLGT in 7.

The MCL methods show significantly degraded accuracy
when localizing on a map which does not reflect the structure
of the perceived environment, as also shown in the literature
[32]. We conjecture it is due to the fact that truncated
likelihood fields and beam-based observation models are not
robust enough to non-negligible discrepancies between the



map and the observed environment. For future works it would
be of interest to explore the conditions under which MCL
results in degraded estimates and if it is possible to improve
the observation model to account for them.

RTL and LSLOC, on the other hand, are virtually unaf-
fected by the presence or absence of furniture. We believe
this is due to the robustness of the ICP variant implemented
in CSM and due to the fact that the localization can only
follow the connectivity of the graph and cannot “cross” a
room wall, which can indeed happen with MCL.

D. Timing results

In our implementation, each localization step re-
quires roughly 220ms of time on a multithreaded
Intel® Core™ i7-3770K CPU clocked at 3.50GHz. By com-
parison, MCL with 5000 particles requires approximately
90ms. The current bottleneck is the number of ICP matchings
executed per time step. This can be drastically reduced by
introducing a better transition model p(r; | 7:—1), which is
currently merely uniform.

VI. CONCLUSION

In this paper we introduced a novel localization approach,
relative topometric localization, that relaxes the assumption
of global consistency of the map used for localization. We
represent the map as a pose graph endowed with sensory
data for each node, which induces a manifold-like structure
that, contrary to a globally consistent map, is not required to
be fully embeddable in a Euclidean space. We reformulated
the localization problem as estimating the topological node
on the graph and a relative metric rigid body transformation.
In doing so we obtained a method that is both robust to
outliers in the map, takes into account the uncertainty in
the mapping process, and that is independent of whether
the graph has been optimized or not. We showed through
extensive evaluation on both simulated and real data that
our method not only significantly improves the localization
accuracy when the global map consistency assumption fails,
but also that for short relative distances it is equally accurate,
or better, than MCL for the nominal cases.
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